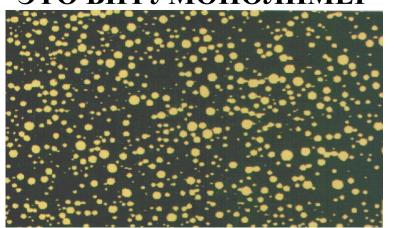
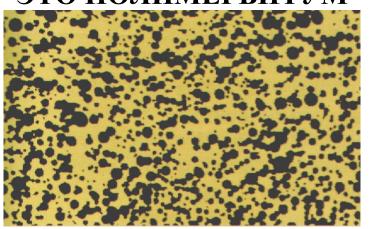
Харьковский национальный автомобильно-дорожный университет

Кафедра технологии дорожно-строительных материалов

Золотарёв В.А.

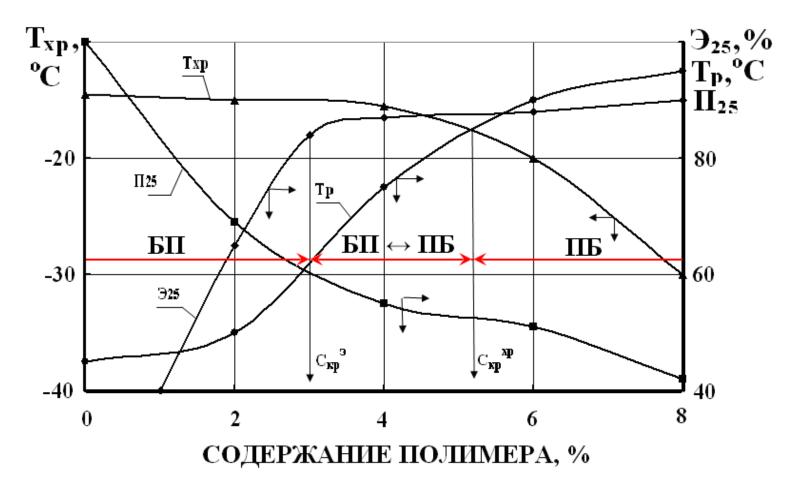

БИТУМЫ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ ПОЛИМЕРА ТИПА СБС И АСФАЛЬТОПОЛИМЕРБЕТОНЫ НА ИХ ОСНОВЕ

III МЕЖОТРАСЛЕВАЯ КОНФЕРЕНЦИЯ «БИТУМ И ПБВ: АКТУАЛЬНЫЕ ВОПРОСЫ 2014»


г. САНКТ-ПЕТЕРБУРГ 2014

СОДЕРЖАНИЕ ПОЛИМЕРА СБС В БИТУМЕ ОПРЕДЕЛЯЕТ ТИП СТРУКТУРЫ БМП

І МАЛО СБС (~3%) СРЕДА – БИТУМ, ФАЗА - СБС ЭТО БИТУМОПОЛИМЕР



II МНОГО СБС (>4,5-6,0 %) СРЕДА – СБС, ФАЗА – БИТУМ ЭТО ПОЛИМЕРБИТУМ

ІІІ ПЕРЕХОДНАЯ СТРУКТУРА

БИТУМОПОЛИМЕР (~2,5 – 3,5 % СБС): ЭЛАСТИЧНОСТЬ ~75 – 80 %, ТЕМПЕРАТУРА ХРУПКОСТИ ИСХОДНОГО БИТУМА

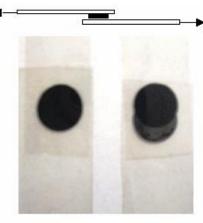
ПОЛИМЕРБИТУМ (>4,5 – 5,0 % СБС): ЭЛАСТИЧНОСТЬ ВЫХОДИТ НА ПЛАТО, ТЕМПЕРАТУРА ХРУПКОСТИ РЕЗКО ПАДАЕТ

В ПЕРЕХОДНОЙ МЕЖДУ БИТУМОПОЛИМЕРОМ И ПОЛИМЕРБИТУМОМ АКТИВНО УВЕЛИЧИВАЕТСЯ «КиШ»

КОЛИЧЕСТВЕННОЕ ИЗМЕНЕНИЕ ПОКАЗАТЕЛЕЙ СВОЙСТВ ОТ СОДЕРЖАНИЯ СБС ПОДТВЕРЖДАЕТ ПРЕДЫДУЩИЕ УТВЕРЖДЕНИЯ

НАИМЕНОВАНИЕ	ПОКАЗАТЕЛИ СВОЙСТВ								
И СОСТАВ	$\Pi_{25}, 0,1 \text{ MM}$	Π_0 , 0,1 mm	T _p , °C	Д ₂₅ , см	Д ₀ , см	Э ₂₅ ,	T _{xp} , °C		
БНД 90/130	116	37	46	>88	5,4	-	-19,5		
БНД 90/130 + 3 % СБС	60	17	55	58	10,0	86	-20,0		
БНД 90/130 + 5 % СБС	48	20	80	63	23,0	95	-18,0		
БНД 90/130 + 7 % СБС	40	16	91	62	24,0	95	-28,0		
БНД 90/130 + 10 % СБС	38	17	102	40	25,0	97	-37,0		

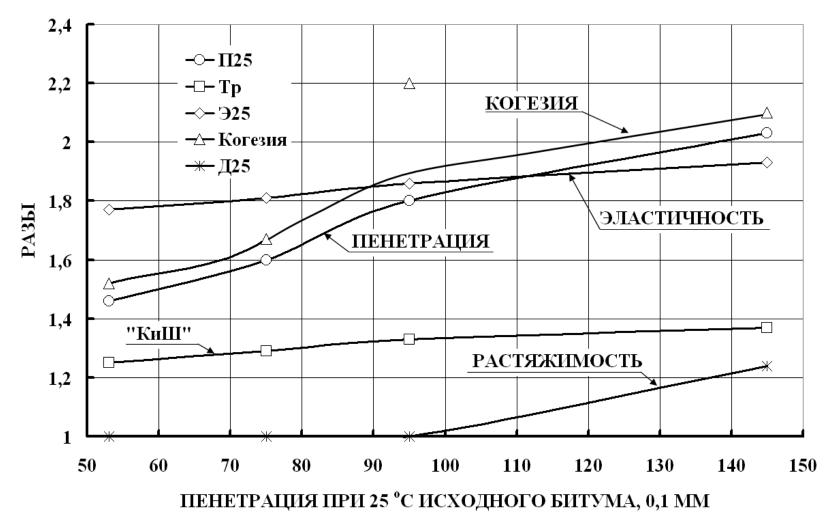
МЕТОДЫ ОПРЕДЕЛЕНИЯ СВОЙСТВ БИТУМНЫХ ВЯЖУЩИХ, РАЗРАБОТАННЫЕ КАФЕДРОЙ ТДСМ - ХНАДУ

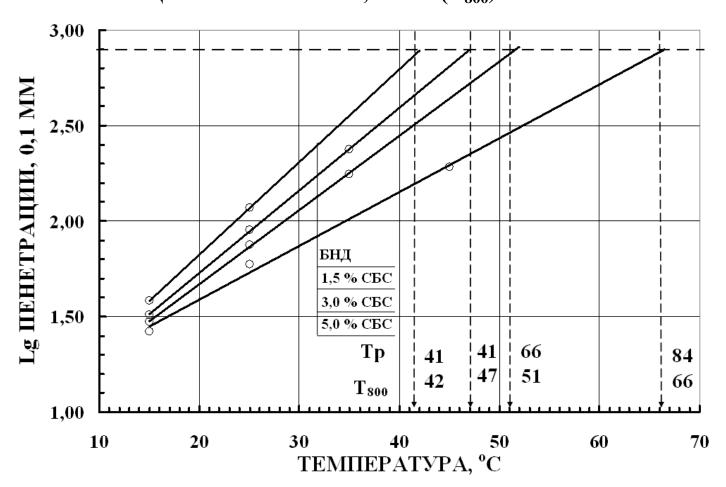

СЦЕПЛЕНИЕ ВЯЖУЩЕГО С ПОВЕРХНОСТЬЮ СТЕКЛА

ВОДНЫЙ ТЕРМОСТАТ ДЛЯ ОПРЕДЕЛЕНИЯ СЦЕПЛЕНИЯ

когезия вяжущего

до после испытания


КОНТЕЙНЕР С ТУБАМИ ДЛЯ ОПРЕДЕЛЕНИЯ СТАБИЛЬНОСТИ БМП ПРИ ХРАНЕНИИ


ВЛИЯНИЕ МАРОЧНОЙ ВЯЗКОСТИ БИТУМОВ НА СВОЙСТВА БМП

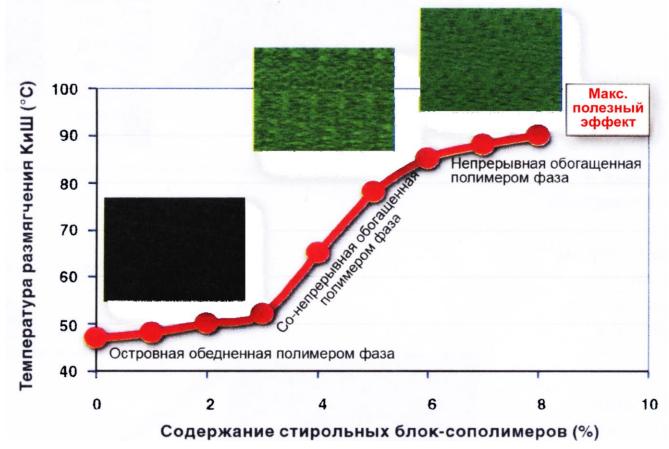
НАИМЕНОВАНИЕ	ЗНАЧЕНИЯ ПОКАЗАТЕЛЕЙ ДЛЯ БИТУМОВ И БМП С 3 % СБС									
показателя свойств	40/60	40/60 БМП	60/90	60/90 БМП	90/130	90/130 БМП	130/200	130/200 БМП		
ПЕНЕТРАЦИЯ, 0,1 ММ 25 ° С 0 ° С	53 26	36 20	75 25	47 26	96 33	53 27	145 41	70 34		
ТЕМПЕРАТУРА РАЗМЯГЧЕНИЯ, ° С	53	66	49	63	47	63	43	59		
ТЕМПЕРАТУРА ХРУПКОСТИ, ° С	-17	-17	-19	-20	-21	-21	-23	-24		
РАСТЯЖИМОСТЬ ПРИ 25°C, CM	20	21	42	38	68	69	67	84		
ЭЛАСТИЧНОСТЬ ПРИ 25 ° C, %	-	79	-	82	-	86	-	93		
КОГЕЗИЯ ПРИ 25 °C, МПА	0,102	0,154	0,079	0,132	0,044	0,105	0,036	0,080		

СТЕПЕНЬ ИЗМЕНЕНИЯ СВОЙСТВ ПРИ ВВЕДЕНИИ 3 % СБС В БИТУМ УВЕЛИЧИВАЕТСЯ С ЕГО ПЕНЕТРАЦИЕЙ: ПЕНЕТРАЦИЯ (ОТ 1,46 РАЗА ДО 2,07 РАЗА) И КОГЕЗИЯ (ОТ 1,52 РАЗА ДО 2,18 РАЗА) ТЕМПЕРАТУРА РАЗМЯГЧЕНИЯ УВЕЛИЧИВАЕТСЯ СЛАБО (ОТ 1,27 РАЗА ДО 1,37 РАЗА)

ОПРЕДЕЛЕНИЕ ТЕПЛОСТОЙКОСТИ ПО ТЕМПЕРАТУРЕ, ПРИ КОТОРОЙ ПЕНЕТРАЦИЯ РАВНА $800\times0,1\,$ MM (T_{800}) ВМЕСТО «КиШ»

В ДИАПАЗОНЕ ТЕМПЕРАТУР ОТ 5 °С ДО Тр ЗАВИСИМОСТЬ Lg П ОТ ТЕМПЕРАТУРЫ ПРАКТИЧЕСКИ ЛИНЕЙНА (ПОДТВЕРЖДЕНИЕ ДАННЫХ ВАН ДЕР ПОЛЯ И ХЕКЕЛОМ'А – 50- 70^{ые} ГОДА XX ВЕКА)

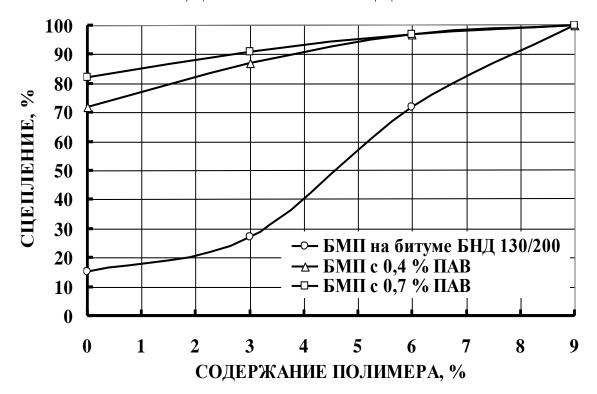
ТЕМПЕРАТУРЫ «КиШ» И T_{800} НЕ СОВПАДАЮТ ПРИ СОДЕРЖАНИИ ПОЛИМЕРА > 3~%


ВЛИЯНИЕ ПЕНЕТРАЦИИ И ПРОИСХОЖДЕНИЯ ИСХОДНОГО БИТУМА НА ТЕМПЕРАТУРЫ «КиШ» И Т₈₀₀

Источник	Наименование	Содержание	Свойства	Свойства исходных битумов и БМП				
битума	полимера	полимера	$\Pi_{25}, \times 0,1 \text{ MM}$	T _P , °C	T ₈₀₀ , °C	T _P -T ₈₀₀ , °C		
		0	435	34	29	5		
		3	252	47,4	34	13,4		
		6	164	89,4	48	41,4		
		0	174	41,3	39	2,3		
	CEC	3	114	46,4	44	2,4		
Мозырьский НПЗ	СБС Кратон 1101	6	72	79,2	65	14,2		
		0	89	46,4	47	-0,6		
		3	67	54,3	52	2,3		
		6	48	76,6	69	7,6		
		0	50	54,9	56	-1,1		
		3	41	62,8	63	-0,2		
		6	34	84,6	79	5,6		
П имиоторов	CEC	0	134	41,3	42	-0,7		
Нижнегород- нефтеорг- синтез	СБС	1,5	94	47	47	0		
	Кратон 1186	3	76	66	51	15		
CHITCS	1100	5	59	84	66	18		

РАСХОЖДЕНИЕ МЕЖДУ ЭТИМИ ТЕМПЕРАТУРАМИ ТЕМ БОЛЬШЕ, ЧЕМ МЕНЕЕ ВЯЗОК ИСХОДНЫЙ БИТУМ.

В СЛУЧАЕ РАДИАЛЬНОГО СБС ОНО БОЛЬШЕ (СОВПАДАЕТ С ДАННЫМИ J.M.M. MOLENER'A – КОНГРЕСС «ЕВРОАСФАЛЬТ - ЕВРОБИТУМ», ВЕНА, 2004 г.)


ВЛИЯНИЕ КОНЦЕНТРАЦИИ СБС НА ТЕМПЕРАТУРУ РАЗМЯГЧЕНИЯ

АВТОРЫ ЭТОГО РЕКЛАМНОГО ГРАФИКА НАХОДЯТСЯ В ЗАБЛУЖДЕНИИ, Т.К. Т₈₀₀ ПРИ 8 % СБС СУЩЕСТВЕННО НИЖЕ ТЕМПЕРАТУРЫ РАЗМЯГЧЕНИЯ.

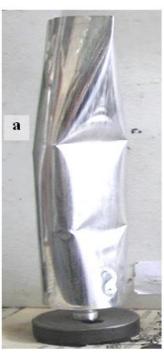
СЛЕДОВАТЕЛЬНО, НЕЛЬЗЯ НАДЕЯТЬСЯ, ЧТО АСФАЛЬТОБЕТОННОЕ ПОКРЫТИЕ ПОВЫСИТ КОЛЕЕУСТОЙЧИВОСТЬ НАСТОЛЬКО, НАСКОЛЬКО ВОЗРАСЛО «КиШ».

ВЛИЯНИЕ РАЗДЕЛЬНОГО И СОВМЕСТНОГО ВВЕДЕНИЯ ПАВ И СБС В БИТУМ НА ИЗМЕНЕНИЕ ЕГО СТОЙКОСТИ ПРОТИВ ОТСЛАИВАЮЩЕГО ДЕЙСТВИЯ ВОДЫ

ПРИ МАЛОМ СОДЕРЖАНИИ ПОЛИМЕРА (БИТУМОПОЛИМЕР) ОН МАЛО ВЛИЯЕТ НА СЦЕПЛЕНИЕ (ЦЕЛЕСООБРАЗНО ВВОДИТЬ ПАВ).

С ПЕРЕХОДОМ К ПОЛИМЕРБИТУМУ (> 3 % СБС) СЦЕПЛЕНИЕ РЕЗКО РАСТЕТ.

В СЛУЧАЕ 6 – 7 % СБС ПАВ НЕ ТРЕБУЕТСЯ. ВОПРОС В ЭКОНОМИЧЕСКОЙ ЦЕЛЕСООБРАЗНОСТИ И ЭКСПЛУАТАЦИОННОЙ НЕОБХОДИМОСТИ.


СТАБИЛЬНОСТЬ БИТУМОВ, МОДИФИЦИРО ПОЛИМЕРАМИ, ПРИ ХРАНЕНИИ

METOД: АДАПТАЦИЯ ЕВРОПЕЙСЬКОГО СТАНДАРТА EN 13 BITUMINOUS BINDERS – DETERMINATION OF STORAGE STAB BITUMENS»

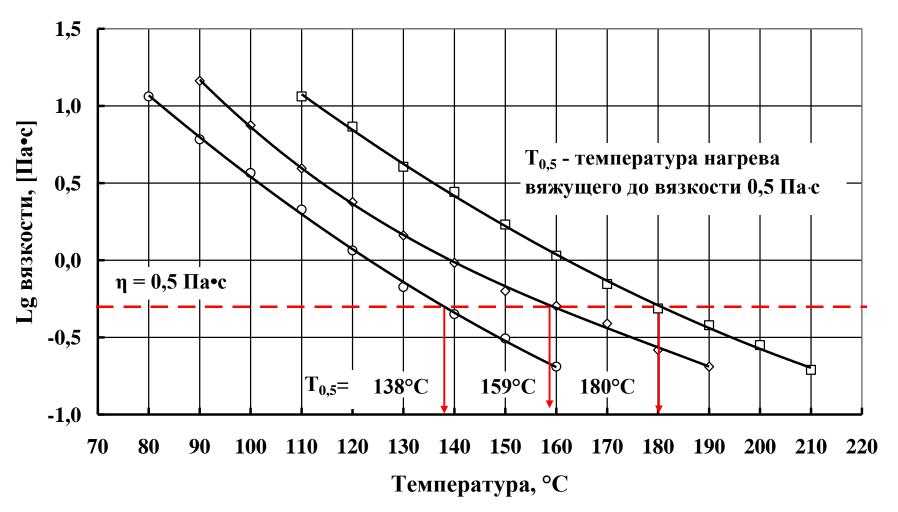
КРИТЕРИЙ: РАЗНИЦА ЗНАЧЕНИЙ ПОКАЗАТЕЛЕЙ СВОЙО "ПОСЛЕ" ИСПЫТАНИЙ

ПРИНЦИПИАЛЬНОЕ ОТЛИЧИЕ: СРОК ХРАНЕНИЯ ПРИ 180 °C

а) туб, готовыі б) туб, заправлен

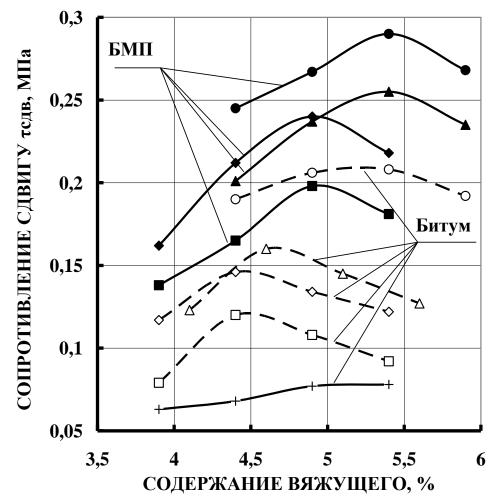
ВЛИЯНИЕ ВЯЗКОСТИ ИСХОДНОГО БИТУМА НА РАССЛАИВАЕМОСТЬ БМП С 3 % СБС

W	Пене	трация	Темпе	ратура	Эластичность		
Исходный Мозырский битум	при 25 °C, 1/10 мм		размягч	ения, °С	при 25 °C, %		
	Bepx	Низ	Bepx	Низ	Bepx	Низ	
Гудрон	244	258	48	47	95	94	
БНД 90/130	125	109	49	46	80	58	
БНД 60/90	72	53	58	54	93	47	
БНД 40/60	51	32	77	64	94	60	


СТЕПЕНЬ РАССЛОЕНИЯ ТЕМ БОЛЬШЕ, ЧЕМ КОНСИСТЕНТНЕЕ ВЯЖУЩЕЕ, ЧЕМ БОЛЬШЕ ПОЛИМЕРА

ЧЕМ БОЛЬШЕ УСИЛИВАЮЩЕЕ ДЕЙСТВИЕ ПОЛИМЕРА, ТЕМ БОЛЬШЕЕ РАССЛОЕНИЕ БМП

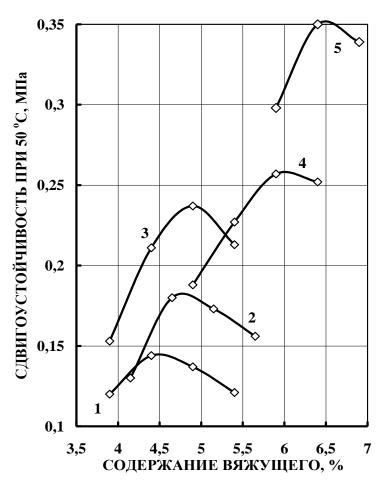
ВЛИЯНИЕ ВЯЗКОСТИ ИСХОДНОГО БИТУМА НА РАССЛАИВАЕМОСТЬ БМП С 3 % СБС


	ПОКАЗАТЕЛИ								
ВИД И КОЛИЧЕСТВО ПОЛИМЕРА В ВЯЖУЩЕМ	ПЕНЕТРАЦИЯ ПРИ 25 °C, 1/10 MM			РАТУРА НЕНИЯ, °С	ЭЛАСТИЧНОСТЬ ПРИ 25 °C, %				
БИЖЗ ЩЕ М	BEPX	НИЗ	BEPX	НИ3	BEPX	НИ3			
1,5 % ДСТ-30-01	83	81	49	49,2	55	57			
3,0 % ДСТ-30-01	108	55	>91	50,9	100	48			
5,0 ДСТ-30-01	126	38	99	60,0	99	52			
3 % ДСТ-30Р-01	130	67	>80	45,8	100	42			
1,5 % Кратон ²⁾ Д-1101	94	91	47	46	68	55			
3,0 Кратон ²⁾ Д-1101	83	79	51	50	72	68			
5,0 % Кратон ²⁾ Д-1101	130	45	94	58	99	57			
1,5 % Кратон Д-1186	98	83	66	47	98	47			
3,0 % Кратон Д-1186	108	62	107	51	99	52			
5,0 % Кратон Д-1186	103	41	113	72	98	43			
2 % Элвалой АМ	90	83	56	57	68	72			
4 % Бутонал NS 198	75	61	54,5	49,5	77	47			

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ВЯЗКОСТИ ВЯЖУЩИХ ОТ СОДЕРЖАНИЯ ПОЛИМЕРА:

УВЕЛИЧЕНИЕ СОДЕРЖАНИЯ ПОЛИМЕРА НА КАЖДЫЕ 3 % ПРИВОДИТ К ПОВЫШЕНИЮ Т_{0.5} ПОЧТИ НА 20 °C

ВЛИЯНИЕ СОДЕРЖАНИЯ БИТУМА И БМП НА ЕГО ОСНОВЕ С 3 % СБС НА СДВИГОУСТОЙЧИВОСТЬ АСФАЛЬТОБЕТОНА


БИТУМЫ С ПЕНЕТРАЦИЕЙ: \circ – 53×0,1 MM, \triangle – 75×0,1 MM, \Diamond – 96×0,1 MM, \Box – 145×0,1 MM И СООТВЕТСТВЕННО БИТУМОПОЛИМЕРЫ С 3 % SBS

НАИБОЛЬШАЯ ПРОЧНОСТЬ НА СДВИГ РАСТЕТ С УМЕНЬШЕНИЕМ ПЕНЕТРАЦИИ КАК В СЛУЧАЕ БИТУМА ТАК И БМП НА ЕГО ОСНОВЕ.

МАКСИМАЛЬНАЯ ПРОЧНОСТЬ ОТВЕЧАЕТ ОПТИМАЛЬНОМУ СОДЕРЖАНИЮ ВЯЖУЩЕГО, КОТОРОЕ УВЕЛИЧИВАЕТСЯ С РОСТОМ ВЯЗКОСТИ БИТУМА И БМП.

ОПТИМАЛЬНОЕ СОДЕРЖАНИЕ БМП НА 0,3 – 0,5 % БОЛЬШЕ, ЧЕМ ИСХОДНОГО БИТУМА. ТЕМПЕРАТУРА РАЗМЯГЧЕНИЯ (ДАЖЕ 90 °С ПРИ ПЕНЕТРАЦИИ 218×0,1 ММ) НЕ ПОЗВОЛЯЕТ ПОЛУЧИТЬ СДВИГОУСТОЙЧИВЫЙ АСФАЛЬТОБЕТОН.

ВЛИЯНИЕ КОНЦЕНТРАЦИИ ПОЛИМЕРА В БМП И СОДЕРЖАНИЯ БМП НА СДВИГОУСТОЙЧИВОСТЬ АСФАЛЬТОБЕТОНА

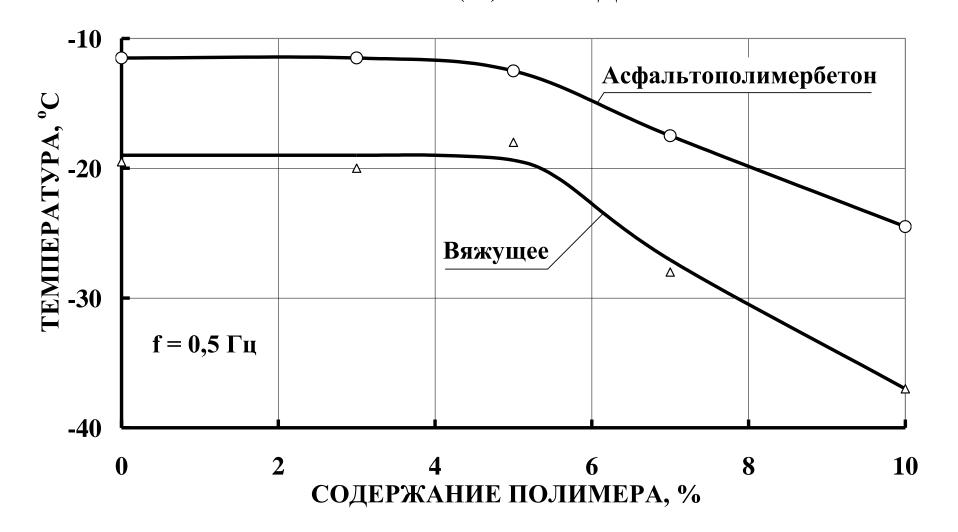
УВЕЛИЧЕНИЕ СОДЕРЖАНИЯ СБС В БМП ДО 10 % ПРИВОДИТ К ПОВЫШЕНИЮ СОПРОТИВЛЕНИЯ СДВИГУ.

ОПТИМАЛЬНОЕ СОДЕРЖАНИЕ БМП ПРИ ПЕРЕХОДЕ ОТ ЧИСТОГО БИТУМА К БИТУМУ С 10 % СБС ПОВЫШАЕТ СОПРОТИВЛЕНИЕ СДВИГУ ПРИ 50 °C В 2,4 РАЗА. ПРИ ЭТОМ ОПТИМАЛЬНОЕ СОДЕРЖАНИЕ БМП РАСТЕТ ОТ 4,5 % ДО 6,5 %.

- 1 битум 90/130;
- 3 битум 90/130 с 3,0 % СБС
- 5 битум 90/130 с 10,0 % СБС
- 2 битум 90/130 с 1,5 % СБС;
- 4 битум 90/130 с 6,0 % СБС

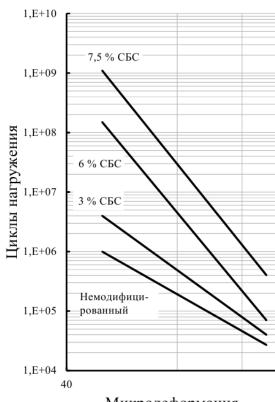
ВЛИЯНИЕ БМП С 3 % СБС НА ОСНОВЕ БИТУМОВ РАЗНОЙ ПЕНЕТРАЦИИ НА РЕОЛОГИЧЕСКИЕ СВОЙСТВА АСФАЛЬТОБЕТОНА ПРИ 20 °C

НАИМЕНОВАНИЕ	Т, f, °C Гц	ПЕНЕТРАЦИЯ ВЯЖУЩЕГО (0,1 MM)						
ПАРАМЕТРА		•	БНД	БМП	БНД	БМП	БНД	БМП
			46	30	70	46	116	60
КОМПЛЕКНЫЙ МОДУЛЬ УПРУГОСТИ E^* , МПА	+20	0,5	2400	2880	1860	2190	1320	1860
УСЛОВНАЯ ТЕМПЕРАТУРА СТЕКЛОВАНИЯ T_{CT} , ^{O}C	•	0,01	-12,5	-12,5	-16,5	-16,5	-18,5	-18,5
КОЭФФИЦИЕНТ ТЕМПЕРАТУРНОЙ ЧУВСТВИТЕЛЬНОСТИ	•	0,01	0,029	0,025	0,029	0,024	0,031	0,026
ТЕМПЕРАТУРА ПЕРЕХОДА В ВЯЗКО- ПЛАСТИЧЕСКОЕ СОСТОЯНИЕ Т _{ВП.} , ^О С	•	0,01	58	1	51	65	46,5	59
КРИТИЧЕСКАЯ ДЕФОРМАЦИЯ, $\varepsilon_{KP} \cdot 10^4$	+20	0,5	2,25	2,5	1,5	2,2	1,25	1,5
КРИТИЧЕСКОЕ НАПРЯЖЕНИЕ, σ_{KP} , МПА	+20	0,5	0,142	0,20	0,082	0,14	0,044	0,086


ТЕМПЕРАТУРЫ СТЕЛОВАНИЯ АСФАЛЬТОБЕТОНОВ И АСФАЛЬТОПОЛИМЕРБЕТОНОВ С 3 % СБС ОДИНАКОВЫ (НО E^* , ϵ_{KP} , σ_{KP} ВЫШЕ).

У БЕТОНОВ С РАВНОЙ ПЕНЕТРАЦИЕЙ БИТУМОВ И БМП ТЕМПЕРАТУРА СТЕКЛОВАНИЯ НА 4 – 5 °C ВЫШЕ В ПОЛЬЗУ БМП. КРИТИЧЕСКИЕ ДЕФОРМАЦИИ И НАПРЯЖЕНИЯ ОДИНАКОВЫ

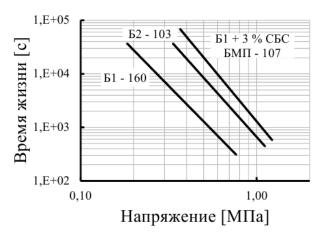
ВЛИЯНИЕ СОДЕРЖАНИЯ СБС В БМП НА РЕОЛОГИЧЕСКИЕ СВОЙСТВА АСФАЛЬТОПОЛИМЕРБЕТОНА ПРИ 20 °C


	БИТ	ГУМ	БМП С 10 % СБС
ПЕНЕТРАЦИЯ, 0,1 ММ	116	46	38
ТЕМПЕРАТУРА ХРУПКОСТИ, °С	-19	-15	-37
ТЕМПЕРАТУРА РАЗМЯГЧЕНИЯ, °С	46 56		102
	АСФА. БЕТ	ЛЬТО- ГОН	АСФАЛЬТО- ПОЛИМЕРБЕТОН
КОМПЛЕКНЫЙ МОДУЛЬ УПРУГОСТИ Е*, МПА	1320	2400	2460 – 5 % 1860 – 10 %
ТЕМПЕРАТУРА СТЕКЛОВАНИЯ, °С	-11,5	-12,5	-24,5
КРИТИЧЕСКАЯ ДЕФОРМАЦИЯ, $\epsilon_{\mathrm{KP}} \cdot 10^4$	1,25	2,25	2,85
КРИТИЧЕСКОЕ НАПРЯЖЕНИЕ, σ_{KP} , МПа	0,44	0,142	0,16

ЗАВИСИМОСТИ ТЕМПЕРАТУРЫ ХРУПКОСТИ БМП (\triangle) И АСФАЛЬТОПОЛИМЕРБЕТОНА (\bigcirc) ОТ СОДЕРЖАНИЯ ПОЛИМЕРА

ЗАВИСИМОСТИ ТЕМПЕРАТУРЫ ХРУПКОСТИ ВЯЖУЩЕГО И АСФАЛЬТОБЕТОНА ПОДОБНЫ

УСТАЛОСТНАЯ ВЫНОСЛИВОСТЬ АСФАЛЬТО-И АСФАЛЬТОПОЛИМЕРБЕТОНОВ


Микродеформация

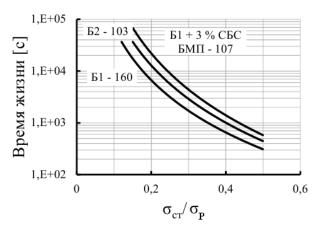
 $\varepsilon = const$

циклы Битум - 10⁶

Битум с 3 % СБС – 4,0·10⁶

$$\frac{N_{EMII}}{N_E} = 4$$

σ = 0,3 МПа (const) секунды


секунды Битум 1 - $7 \cdot 10^3$ $\Pi_{25} = 160 \times 0,1$ мм

Битум 2 - 6.10^4 $\Pi_{25} = 103 \times 0.1$ мм

Битум с 3 % СБС $-1,5\cdot10^5$ $\Pi_{25} = 107 \times 0,1$ мм

$$\frac{t_{EMII}}{t_{E1}} = \frac{1.5 \cdot 10^5}{7 \cdot 10^3} = 21.4$$

$$\frac{t_{EMII}}{t_{E2}} = \frac{1,5 \cdot 10^5}{6 \cdot 10^4} = 2,5$$

$$\frac{\sigma}{\sigma_P} = 0.2$$
 (const)

Битум 1 -
$$7 \cdot 10^3$$

 $\Pi_{25} = 160 \times 0,1$ мм

Битум
$$2 - 1,2 \cdot 10^4$$

 $\Pi_{25} = 103 \times 0,1$ мм

Битум с 3 % СБС –
$$2 \cdot 10^6$$
 $\Pi_{25} = 107 \times 0.1$ мм

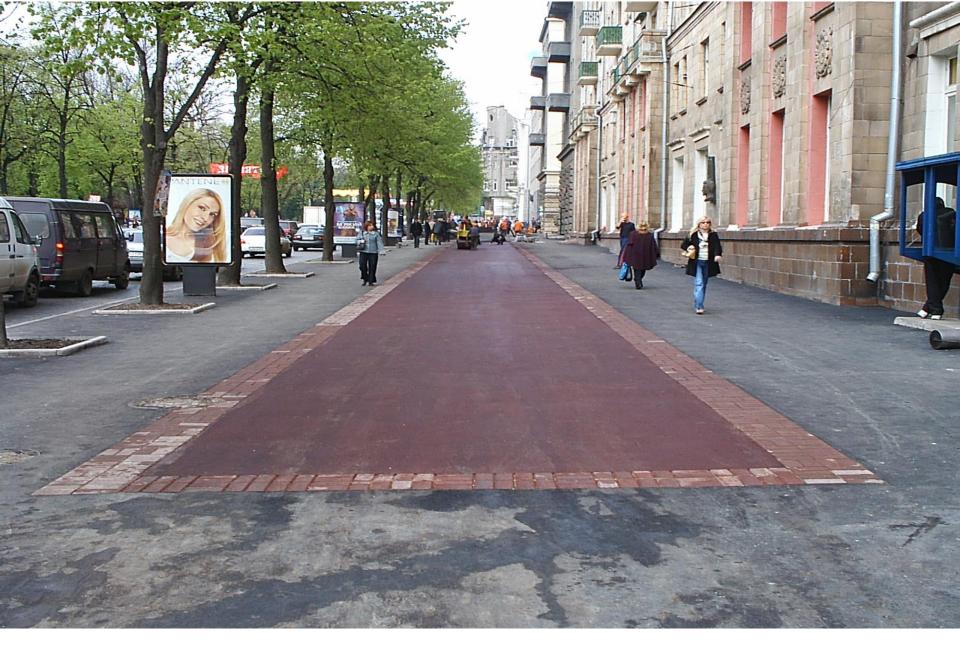
$$\frac{t_{EMII}}{t_{E_1}} = \frac{2 \cdot 10^4}{7 \cdot 10^3} = 2,8$$

$$\frac{t_{EMII}}{t_{E2}} = \frac{2 \cdot 10^4}{1.2 \cdot 10^4} = 1,7$$

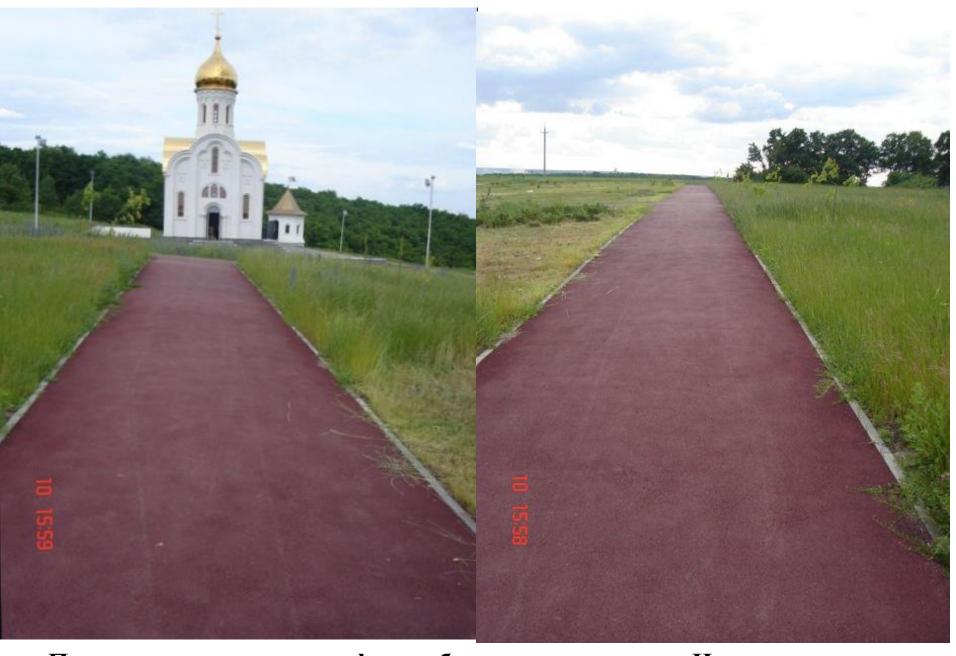
ОБЪЕКТИВНО ПРЕИМУЩЕСТВО АСФАЛЬТОПОЛИМЕРБЕТОНА МОЖНО ОЦЕНИТЬ СРАВНИВАЯ ЕГО С АСФАЛЬТОБЕТОНОМ НА БИТУМЕ РАВНОЙ ПЕНЕТРАЦИИ И РАВНОМ σ/σ_p

Харьковский национальный автомобильно-дорожный университет Кафедра технологии дорожно-строительных материалов

Цветной асфальтобетон — дорога длиной в 55 лет


Пешеходный переход в г. Луганск (1961) из термопластбетона на основе кумароновой смолы - неудачный опыт

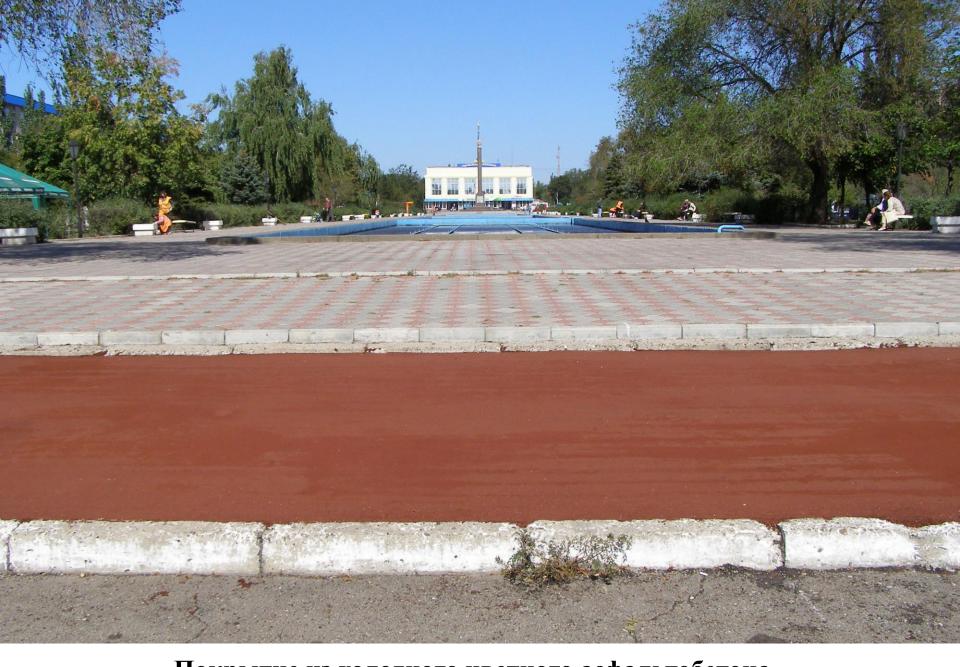
Площадка из цветного асфальтопекобетона в г.Харькове (1986 г.) возле памятника Артема - разрушилась через 2 года


Площадка вокруг памятника В.И. Ленину из красного пекополимербетона в г.Барнауле (1990 г.)

г. Харьков (2003 г.), ул. Сумская - первый удачный опыт

г. Харьков (2003 г.), аллея в парке им. Т.Г. Шевченко

Покрытие из цветного асфальтобетона, устроенное у Национального мемориального комплекса «Высота маршала И.С.Конева»


Покрытие из цветного асфальтобетона, устроенное в парке им. Горького г. Харьков (2006 г.)

Покрытие из цветного асфальтобетона, устроенное возле презентационно-выставочного центра «Радмир - Экспохолл», г. Харьков

Покрытие из холодного цветного асфальтобетона г. Северодонецк, 2012 г.

Покрытие из холодного цветного асфальтобетона г. Северодонецк, 2012 г.